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Note 

A Method of Spectral Analysis Applied to 
Periodic and Pseudoperiodic Signals 

The analysis of a large number of physical phenomena requires calculations of 
periodic and pseudoperiodic components of various signals given by the output of 
measurement devices. A set of discrete values corresponding to the time evolution 
of a signal must generally be analyzed. These values are usually obtained by sam- 
pling at regular time intervals of parameters describing the evolution of a system. 
Numerical results must often be analyzed in a similar fashion, as is shown for 
instance in [l, 2, 31. 

The object of this note is to present a method based on the classical technique of 
fast Fourier transform for identifying the pseudoperiodic components of a signal or 
a function defined by a set of discrete values. 

The method is illustrated by results for both cases when the signal contains noise 
or not. 

THE METHOD 

Let us consider a signal g(t) sampled at regular time t, = rT/N, where T is the 
duration of sampling in seconds, N is the number of samples, and we have 
0 9 r d N - 1, in other words, T is the width of the rectangular window function 
which will be used throughout the analysis of the complete signal g(t) defined on 
the time interval - cc < t < +co. 
Furthermore we define 

gr = g(tr) re [0, N- 11. (1) 

These sampled data are supposed to satisfy the Shannon condition (sampling fre- 
quencies are greater than twice the largest frequency of the signal), and it is 
assumed that no aliasing phenomenon is present [4, 51. Numerically, it is simple 
and very fast by using an FFT algorithm to compute the discrete Fourier transform 
of the function g(t) corresponding to the frequency interval 2x/T; we thus have 

N-l 

Gi = (l/N) 1 g, exp ( - i2nrj/N) jE CO, N/21. 
2=0 
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In general, the values G, do not provide the exact spectrum of the function g(r): 
in particular; if periodic components are present in the signal, the peaks of the spec- 
trum are not equal to amplitude of the periodic components, except for very special 
cases [6,7] (“leakage effect”). Thus it is not possible to determine the complex 
amplitude and frequency of the various components in the signal from the 
knowledge of the values G,. The present method is a lineshape fitting method that 
makes it possible to obtain the exact values of amplitude and frequency from the 
values G, in all cases. 

The method requires that the signal consists of a superposition of a finite number 
of well-distinct and weakly-damped periodic components; we thus have 

N-l 

g,=(i) 1 A,exp(inx-t,)+~kexpf-i~,l,)$-B(t,) 
k=O 

Pa) 

for a realsignal g(t) or 

N-l 

gr= c Akexp(iS2kt,)+B(rr) 
k=O 

for a complex signal, where we have 

A,=ak+ibk 

with ak, b,, &, and. ok real and IAkl @ 1, and B(t,) represents a low-level noise. 
In Eqs. (3a) and (3b), the integer k takes values between 0 and N- 1; however, 

only some values of A, are nonzero since the signal is assumed to consist of distinct 
components. In this study, the analysis will only be presented for the case of a com- 
plex signal. For a real signal, the analysis needs to be slightly modified but the 
procedure for numerical calculations is essentially identical; specifically, the 
amplitude of a real signal as computed by using an algorithm based on the input of 
a complex signal, only needs to be multiplied by two. 

Equations (3b) and (2) yield 

G,= ; NflA, 
0 

l-exp[-IkT+i(o,T-2T;j)] 

k=O 1 - exp [ - & T + i(o, T - 2nj)]/N 

(61 

Equation (6) shows that there is no obvious direct relation between the values G, 
and Ak except for those components for which the frequencies ok are integer mul- 
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tiples of the frequency interval dw = 27cIT. For these particular components with 
j= K and wK = K2z/T, Eq. (7a) can be obtained from Eq. (6) 

G =A l-expWKT)+ 1 -exp(-&T) 
K K 

AKT l-exp(-&T+i2~(k-K))/N 

Nf ’ exp ( - i2nrK/N) B, (74 
r=O 

provided that I, is small. It can be seen that if all the values Rk vanish for k in 
[IO, N- l] we have 

Gk = A, + C(K). Vb) 

In the latter case, G, thus immediately yields the value of A,, disregarding the con- 
tribution C(K) of the noise. The foregoing property of the discrete Fourier trans- 
form is utilized in methods where T can be matched to the valuess of wK. One of 
these methods, so-called “tracking method,” automatically performs the adjustment 
of T by means of electronical apparatus [6]. 

More generally, the frequency of a component can be related to two successive 
integer multiples of do, as follows: 

KAoQw,d(K+l)Aw 

(K-~)AW<W,GKAW. 

@aI 

(8b) 

In practice, K corresponds to the value ofj for ,which Gj is a peak in the spectrum, 
even if the leakage effect is present. Equations (8) can be expressed as follows: 

OK= (K+ EK) 2x/T with -l<&K<l. @cl 

The present method consists in determining sK, from which wK is then obtained by 
using Eq. (8~). In the vicinity of a peak corresponding to j= K, Eq. (6) yields 

G =A 
K K 

l-exp(-&T+i2ne,)+ 
AKT- i2ne, 

N-l 

x c AK 
1 -exp(-i,T+i2n Ed) 

1 -exp((-&T+i2z(&,+k-K))/N 
+ C(K). (9) 

k=O 
k#ko 

If the terms of order l/N are neglected, we have 

G =A l-exp(--/2,T+i2nnsK) 
K K Iz,T- i27rs, 

+ C(K). Pa) 
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Similarly for j = K + 1 and j = K - 1, we have 

G 
-A 1 -exp(-l,T+i2z.sK) 

K+l- K ;1,T- i2n.sK-- i2n 
+ C(K+ 1) 

G,-l=AK 
1-exp(-I,T+i271EK) 

;1,T-2in~~+ i2n 
+ C(K- 1). 

(9b) 

Let us assume that the noise is a filtered white noise and that its level is low. The 
Fourier transform C(K) of the noise B(t) is then gradually varying between the 
values K- 1, K, KS 1, so that the contribution of the noise can be neglected in the 
differences G,-GK+l and G,-G,-,. Let A represent the value of the ratio 
(GK- G,, ,)/(G, - G,_ 1), in which the contribution of the noise is ignored as was 
just explained. 

Equations (9a), (9b), (SC) then yield 

A = - (Z, + i2n)/(Z, - i2n), !lO) 

where Z, is defined as 

Z,= -A,T+ i2nE,. 

From Eq. (10) we may readily obtain 

Z,= i2n(A - l)/(A + 1). 

By identifying the real and imaginary parts of Z, in Eq. (1 i), we then can deter- 
mine the values of L, and sK. The complex frequency 0, defined in Eq. (5) t 
becomes 

52, = il, + (K + cK) 2x/T, (121 

where Eq. (8~) was used. 
The contribution of the noise can be eliminated in a similar fashion by consider- 

ing the sum 2G,-G,+,-G,_1. Equations (9a), (9b), (SC) then yield the 
amplitude AK : 

AK=@GK-GK+I+GK-I~) 

Z,(Z’, + 4n* 
&c*(l -exp(-2,))’ 

In summary, the method consists in computing the FFT of the signal for N = 2”, in 
detecting the peaks j = K in the spectrum and in calculating sK and AK from Eq. 
(1 l), the complex frequency 52, from Eq. (12), and the complex amplitude A, from 
Eq. (13). 
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COMPARISON OF THE PRESENT METHOD WITH THAT OF REFERENCE [S] 

The method presented in the present study is similar to that used by Feit and 
Fleck [S]. The function g(t) is multiplied by a Hanning window function in [8]. 
The number sK, referred to as the “offset parameter” by the authors of [S], is given 
by a second-degree algebraic equation instead of a first-degree equation in the 
present study. As far as can be seen, the authors of [S] have not applied their 
method to noised signals. Equation (10) in the present study shows how the noise 
contribution can be eliminated in part in the calculation of 52, and A,. These two 
points (the simple expression of the frequency shift and the elimination in part of 
the noise contribution) appear as the advantages of the rectangular window in the 
present work. 

Numerical results obtained by using the two methods are compared in Table I 
for a signal defined by 

g(t)= f exp(iPjr) 
J=l 

where /Ii = /I’,’ + i/l; and Aj = 1. 
The values of frequency, damping, and amplitude predicted by the two methods 

can be seen in very close agreement. It should be noticed that a global method as 
shown in [S] is more accurate for a signal without noise. This method consists of 
first making the previously described local estimation which is supposed to yield 

TABLE I 

Comparison between the Actual Values of the Complex Frequencies 
for a Spectrum with Ten Peaks and the Values Predrcted by the Method 

Used in [8] and in the Present Study 

Actual Computed (Ref. [S]) (a) Computed (present method) (b) 

1. 800. 0. 0.9999992 800.0000 6.91 
1. 760. 0. 0.9999981 760.0000 -11.4 
1. 720. 0. 0.9999984 720.0000 67.9 
1. 680. 0. 0.9999994 680.0000 -15.7 
1. 640. 0. 0.9999996 640.0000 - 164. 
1. 600. 0. 0.9999985 600.0000 -70.9 
1. 560. 0. 0.9999980 560.0000 - 10.3 
1. 520. 0. 0.9999980 520.0000 6.94 
1. 480. 0. 0.9999983 480.0000 - 16.9 
1. 440. 0. 1.0000020 440.0000 -33.4 

0.9999942 
0.9999971 
0.9999971 
0.9999964 
0.9999962 
0.9999964 
0.9999963 
0.9999967 

0.9999992 

0.68 800.0000 10.5 
- 1.03 760.0000 1.43 
-0.93 720.0000 3.62 
-0.70 680.0000 6.99 
-0.61 640.0000 9.21 

0.41 600.0000 10.4 
0.22 56O.OOOO 10.6 
0.02 520.0000 9.68 
0.16 480.0000 7.25 
0.10 440.0000 2.02 

Note. The amplitudes A, are complex in the present method). g(t) = c:!!, exp(ib,t); /I,=&+ i/J’;; 

A,=l. 
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accurate frequencies. Then, holding the frequencies fixed, a global least square fit of 
complex amplitudes is made by using an over determinate linear system (solved by 
a Householder method). The results corresponding to this global method are not 
reported in this paper. 

NUMERICAL RESULTS 

Tables II and III present numerical results corresponding to the signal 

g(t)= $J A,exp(-i/?,t)+B(t). 
/=l 

In Table II, no noise is present, but two components having widely different 
amplitudes (1. and 0.005) and two other components with frequencies that are very 
close (600. and 603.) are considered. The accuracy of the predicted frequencies can 
be seen to be very good; however, the accuracy of the calculated amplitude and 
damping is noticeably reduced by the proximity of two frequencies. Results for a 
noised signal are presented in Table III. It can be seen that the frequencies are 
predicted with high accuracy, but that the calculated amplitudes exhibit errors of 
3 x 10m3 to 4 x 10m3 instead of 4 x 10m6 to 5 x 10e6 in the case of signal without 
noise. The noise was generated by using the well-known subroutines RANDU and 
GAUSS for a set of values of data with a time interval of 0.00375 s. 

Calculations were performed on a NAS9050. Other calculations not reported 

TABLE II 

Analysts of a Signal Having Two Widely Different Amplitudes and 
Two Very Close Frequencies 

Actual values 1 Computed values 

n ‘4, 

1 1. 800. 0 0.9999922 -0.385 
2 1. 760. 0 0.9999950 -0.675 
3 1. 720. 0 1.0000001 - 0.602 
4 0.005 680. 0 0.4994 x 10 * 75.0 
5 1. 640. 0 0.9999918 0.118 
6 1. 603. 0 1.0002924 2.70 
7 1. 600. 0 0.9989991 - 6.08 
8 1. 520. 0 0.9999928 -0.398 
9 1. 480. 0 0.9999958 -0.615 
10 1. 440. 0 1.000001 -0.475 

I.4 aW.%) 
deg. x lo3 

p:, x 10s 

800.0000 -23.0 
760.0000 -10.1 
720.0000 7 59 
650.0000 2210 
640.0000 -23.6 
603.0000 1050 
600.0000 - 3200 
520.0000 -21.6 
480.0000 - 8.44 
4403000 10.1 

Note. The signal is not noised. 
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TABLE III 

Analysis of a Ten-Peak Spectrum for Signal with Noise 
Characterized by a Null Average and a Standard Deviation (r = 0.1 

Actual values Computed values 

w (4 deg. 

1 1. 800. 0 0.992910 -0.036 800.0000 -1.10 
2 1. 760. 0 0.996323 0.149 760.0000 - 1.35 
3 1. 720. 0 0.998309 -0.175 720.0000 0.10 
4 1. 680. 0 1.00414 -0.336 680.0001 2.21 
5 1. 640. 0 0.996905 0.208 640.0000 - 1.32 
6 1. 600. 0 1.001869 - 0.090 600.0000 0.40 
7 1. 560. 0 0.997127 - 0.222 560.0000 -0.80 
8 1. 520. 0 0.993258 0.053 520.0000 -0.17 
9 1. 480. 0 1.004288 -0.015 480.0000 1.14 

10 1. 440. 0 0.996067 -0.301 440.0002 -0.50 

here have been performed for signals with frequencies up to 1000 Hz and good 
results were obtained. 

An alternative method for determining the pseudoperiodic components of a 
signal is Prony’s method [2, 111 or its generalization [12, 131. 

CONCLUSION 

The method presented in the present study is useful for determining the 
pseudoperiodic components of a signal defined by a set of discrete values. The fre- 
quencies can be predicted with high accuracy whether or not the signal is noised. 
The accuracy of the calculated damping and to a lesser extent of the amplitude is 
reduced, but nonetheless remains quite reasonable, when the signal is noised or has 
frequencies very ‘close to one another. The method has been applied successfully to 
analyze pseudo-periodic phenomena in hydrodynamics for which the frequencies 
usually are lower than 15 Hz [9, lo]. 
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